✨ Happy New Year, Stay Blessed! 🌟

Technical Calculator

Electric Potential Calculator

The calculator will work for the electric potential and distance between two points with respect to their cumulative potentials.

Potential type image

This up-to-the-minute electric potential calculator calculates the potential at a point due to either a single charge or a system of charges. Not only this, but the calculator will also compute the electric potential between two charges.

What Is Electric Potential?

It is the amount of work energy that is needed to move a charge against the electric field.

Electric Potential Formula:

Our calculator uses the following electric potential energy equation to calculate the electric potential accurately: Electric Potential Due To a Single Charge: \(V = k \dfrac{q}{r}\)

Where;

  • k = \(\dfrac{1}{4πε_{o}}\)
  • A = Distance between infinity and the point charge
  • q = Electrostatic charge causing potential

Whenever you use the formula for electrical potential energy, keep in mind that the nature of the charge is directly proportional to that of the potential. Even our electric potential calculator verifies the same fact as it calculates positive potential due to a positive point charge and vice versa.

Electric Potential Due To a System of Charges:

Consider we have different point charges that are causing the electrical potential! Now here, each charge puts pressure on the point charge that can easily be calculated through this electric potential calculator online. Mathematically, we have the following electric potential energy formulas for each charge:

\(V_1 = k \dfrac{q_1}{r_1}\)

\(V_2 = k \dfrac{q_2}{r_2}\)

\(V_3 = k \dfrac{q_3}{r_3}\)

\(V_4 = k \dfrac{q_4}{r_4}\)

Here, the electric potential energy calculator uses the superposition principle to calculate the electric potential difference on an average.

\(V = V_1+V_2+V_3+V_4\)

\(V = k \left(\dfrac{q_1}{r_1}+\dfrac{q_2}{r_2}+\dfrac{q_3}{r_3}+\dfrac{q_4}{r_4}\right)\)

Electric Potential Due To a System of n Charges:

\(V = V_1+V_2+V_3+V_4+...+V_n\)

\(V = k \left(\dfrac{q_1}{r_1}+\dfrac{q_2}{r_2}+\dfrac{q_3}{r_3}+\dfrac{q_4}{r_4}+...+\dfrac{q_n}{r_n}\right)\)

How To Calculate Electric Potential Difference?

If we are given a charge of \(4*10^12C\) and a distance of about 2 cm, how to find electric potential?

Solution:

Using the electric potential formula:

\(V = k \dfrac{q}{r}\)

\(V = \dfrac{1}{4πε_{o}}*\dfrac{4*10^12C}{2 cm}\)

\(V = \dfrac{1}{4*3.14*1} \dfrac{4000000000000}{0.002m}\)

\(V = 1.798*10^+24\)

Which is the required potential. To verify it, simply input the charge and distance in the electrostatic potential energy calculator and it will output the results. After that, match the result with the calculated here.

Working of Electric Potential Calculator:

Using our calculator needs no effort! Everything is easy to input and get straightforward results. Let’s find out how!

Input:

  • First, select what you want to calculate
  • On the basis of selection, enter the required parameters in their respective fields
  • Tap Calculate

Output:

  • Electric potential due to a single point charge or a system of point charges
  • Electrical potential difference among two point charges

Faqs:

Can Electric Potential Be Negative?

Absolutely yes! Recalling the statement that electrical potential is proportional to the nature of the charge, a negative charge will cause a negative electric potential.

What Is The Electric Potential of a Charge At a Point At Infinity?

As the electric potential is proportional to the distance between the chargers, the potential at a point at infinity will be zero.

What Is 1 Electric Potential?

1 electric potential is defined as the electrical potential energy per unit charge.

References:

From the source Wikipedia: Electric potential, Electrostatics, Electric potential due to a point charge, Generalization to electrodynamics, Gauge freedom