Technical Calculator

Voltage Drop Calculator

The calculator will calculate the voltage drop, its percentage, and resistivity of any wire piece. based on the NEC or wire resistivity data you provide.

Calculate the overall drop in voltage for DC and AC circuits with the voltage drop calculator. The tool uses the NEC and Wire Resistance equations for power loss across a load connected in a single-phase and three-phase supply system and tells you the actual potential fall in the whole circuit. In addition to that, you may also get the wire cross-sectional area, resistance, and voltage across terminals with the calculator.

What Is Voltage Drop?

“It is the overall loss of the voltage due to the internal impedance of the circuit”

Pictorial Representation:

voltage drop

In the above figure, we have a potential voltage applied to a circuit network containing only a resistance. Now when the current passes through the resistance, there will be ampacity and drop in voltage from one end to the other end of the resistor. This drop can be instantly determined by using the voltage calculator above.

Types of Voltage Drop:

According to the IEEE (Institute of Electrical and Electronics Engineers), there are two types of voltage drop.

Positive Voltage Drop:

A positive drop occurs when the electronic current flows through the circuit.

positive voltage drop

Negative Voltage Drop:

This voltage drop usually occurs in a circuit when there is a conventional current flowing through it.

negative voltage drop

Voltage Drop Equations:

Voltage Drop Formula for Single Phase:

\(V_{drop\left(V\right)} = I_{cable\left(A\right)} * R_{wire\left(ohms\right)}\) \(V_{drop\left(V\right)} = I_{wire\left(A\right)} * \left(2 * L_{\left(ft\right)} * \frac{R_{wire\left(\frac{Ω}{kft}\right)}}{1000_{\left(\frac{ft}{kft}\right)}}\right)\) \(V_{drop\left(V\right)} = I_{wire\left(A\right)} * R_{wire\left(Ω\right)}\) \(V_{drop\left(V\right)} = I_{wire\left(A\right)} * \left(2 * L_{\left(m\right)} * \frac{R_{cable\left(\frac{ohms}{km}\right)}}{1000_{\left(\frac{m}{km}\right)}}\right)\)

Voltage Drop Formula for Three Phase:

\(V_{drop\left(V\right)} = \sqrt{3} * I_{wire\left(A\right)} * R_{wire\left(Ω\right)}\) \(V_{drop\left(V\right)} = 1.732 * I_{wire\left(A\right)} * \left(L_{\left(ft\right)} * \frac{R_{wire\left(\frac{Ω}{kft}\right)}}{1000_{\left(\frac{ft}{kft}\right)}}\right)\) \(V_{drop\left(V\right)} = \sqrt{3} * I_{wire\left(A\right)} * R_{wire\left(Ω\right)}\) \(V_{drop\left(V\right)} = 1.732 * I_{wire\left(A\right)} * \left(L_{\left(m\right)} * \frac{R_{wire\left(\frac{ohms}{km}\right)}}{1000_{\left(\frac{m}{km}\right)}}\right)\)

Whatever the phase is, the calculator will take a couple of seconds to display the actual loss in the voltage transmission.

Diameter of the Wire:

For a cable having a diameter in inches and n gauges:

\(d_{n\left(in\right)} = 0.005 inches * 92^{\frac{\left(36-n\right)}{39}}\)

And When The Diameter Is In Millimeters:

\(d_{n\left(mm\right)} = 0.127 mm * 92^{\frac{\left(36-n\right)}{39}}\)

Cross Section Area of Wire:

\(A_{n\left(kcmil\right)} = 1000 * d_{n}^{2} = 0.025 in^{2} * 92^{\frac{\left(36-n\right)}{19.5}}\) \(A_{n\left(in^{2}\right)} = \left(\frac{\pi}{4}\right) * d_{n}^{2} = 0.000019635 in^{2} * 92^{\frac{\left(36-n\right)}{19.5}}\) \(A_{n\left(mm^{2}\right)} = \left(\frac{\pi}{4}\right) * d_{n}^{2} = 0.000019635 mm^{2} * 92^{\frac{\left(36-n\right)}{19.5}}\)

Resistance By The Wire:

\(R_{n\left(\frac{Ω}{kft}\right)} = 0.3048 * 10^{9} * \frac{ρ\left(Ω.m\right)}{25.4^{2} * A_{n\left(in^{2}\right)}}\)

FAQ’s:

What Causes a Voltage Drop?

When the potential at the end of the wire gets higher than the potential at the start, then it gives rise to the potential voltage drop.

Does Voltage Drop Over Distance?

The distance is directly proportional to the resistance and when the resistance increases, the Voltage drop will also get maximum.

How Do You Prevent Voltage Drop?

  • The temperature of the conductor must be reduced to enough
  • The length of the conductor should be decreased
  • Reduce the power load voltage connected to the circuit
  • Increasing the number of the conductors connected in the circuit

You must keep checking the drop with the calculator to analyze better.

How Much Voltage Drop Is Acceptable?

The maximum voltage loss calculation that could be tolerable between a feeder conductor to the farthest load connected in series or parallel must not exceed the value of 5%.

What Is The Maximum Voltage Drop In a Domestic Property?

  • Single phase = 230.4 V
  • Three phase = 398.4 V

American Wire Gauge (AWG) Sizes:

AWG Diameter Turns of cable Area Copper resistance
inch mm per inch per cm kcmil mm2 Ω/km Ω/1000ft
0000 (4/0) 0.4600 11.684 2.17 0.856 212 107 0.1608 0.04901
000 (3/0) 0.4096 10.404 2.44 0.961 168 85.0 0.2028 0.06180
00 (2/0) 0.3648 9.266 2.74 1.08 133 67.4 0.2557 0.07793
0 (1/0) 0.3249 8.252 3.08 1.21 106 53.5 0.3224 0.09827
1 0.2893 7.348 3.46 1.36 83.7 42.4 0.4066 0.1239
2 0.2576 6.544 3.88 1.53 66.4 33.6 0.5127 0.1563
3 0.2294 5.827 4.36 1.72 52.6 26.7 0.6465 0.1970
4 0.2043 5.189 4.89 1.93 41.7 21.2 0.8152 0.2485
5 0.1819 4.621 5.50 2.16 33.1 16.8 1.028 0.3133
6 0.1620 4.115 6.17 2.43 26.3 13.3 1.296 0.3951
7 0.1443 3.665 6.93 2.73 20.8 10.5 1.634 0.4982
8 0.1285 3.264 7.78 3.06 16.5 8.37 2.061 0.6282
9 0.1144 2.906 8.74 3.44 13.1 6.63 2.599 0.7921
10 0.1019 2.588 9.81 3.86 10.4 5.26 3.277 0.9989
11 0.0907 2.305 11.0 4.34 8.23 4.17 4.132 1.260
12 0.0808 2.053 12.4 4.87 6.53 3.31 5.211 1.588
13 0.0720 1.828 13.9 5.47 5.18 2.62 6.571 2.003
14 0.0641 1.628 15.6 6.14 4.11 2.08 8.286 2.525
15 0.0571 1.450 17.5 6.90 3.26 1.65 10.45 3.184
16 0.0508 1.291 19.7 7.75 2.58 1.31 13.17 4.016
17 0.0453 1.150 22.1 8.70 2.05 1.04 16.61 5.064
18 0.0403 1.024 24.8 9.77 1.62 0.823 20.95 6.385
19 0.0359 0.912 27.9 11.0 1.29 0.653 26.42 8.051
20 0.0320 0.812 31.3 12.3 1.02 0.518 33.31 10.15
21 0.0285 0.723 35.1 13.8 0.810 0.410 42.00 12.80
22 0.0253 0.644 39.5 15.5 0.642 0.326 52.96 16.14
23 0.0226 0.573 44.3 17.4 0.509 0.258 66.79 20.36
24 0.0201 0.511 49.7 19.6 0.404 0.205 84.22 25.67
25 0.0179 0.455 55.9 22.0 0.320 0.162 106.2 32.37
26 0.0159 0.405 62.7 24.7 0.254 0.129 133.9 40.81
27 0.0142 0.361 70.4 27.7 0.202 0.102 168.9 51.47
28 0.0126 0.321 79.1 31.1 0.160 0.0810 212.9 64.90
29 0.0113 0.286 88.8 35.0 0.127 0.0642 268.5 81.84
30 0.0100 0.255 99.7 39.3 0.101 0.0509 338.6 103.2
31 0.00893 0.227 112 44.1 0.0797 0.0404 426.9 130.1
32 0.00795 0.202 126 49.5 0.0632 0.0320 538.3 164.1
33 0.00708 0.180 141 55.6 0.0501 0.0254 678.8 206.9
34 0.00630 0.160 159 62.4 0.0398 0.0201 856.0 260.9
35 0.00561 0.143 178 70.1 0.0315 0.0160 1079 329.0
36 0.00500 0.127 200 78.7 0.0250 0.0127 1361 414.8
37 0.00445 0.113 225 88.4 0.0198 0.0100 1716 523.1
38 0.00397 0.101 252 99.3 0.0157 0.00797 2164 659.6
39 0.00353 0.0897 283 111 0.0125 0.00632 2729 831.8
40 0.00314 0.0799 318 125 0.00989 0.00501 3441 1049