Technical Calculator

Beam Deflection Calculator

beam image

add to favorites Add to favorites

The way to Calculate Beam Deflection?

Following beam deflection formulation will help you out in determining the respective beam deflections for certain masses it contains

Simply-Supported Beam:

Midspan Load:

\(𝛿_{max}=\dfrac{PL^{3}}{48EI}\)

Load at Any point:

\(𝛿_{max}=\dfrac{Pb\left(3L^{2}-4b^{2}\right)}{48EI}\)

Uniform Load:

\(𝛿_{max}=\dfrac{5wL^{4}}{384EI}\)

Uniformly varying Load:

\(𝛿_{max}=\dfrac{0.00652wL^{4}}{EI}\)

Triangular Load:

\(𝛿_{max}=\dfrac{wL^{4}}{120EI}\)

Moment Load at some help:

\(𝛿_{max}=\dfrac{ML^{2}}{9\sqrt{3}EI}\)

Cantilever Beam:

For those specific types of beam, our metallic i beam deflection calculator exclusive equations which can be as follows:

Give up Load:

\(𝛿_{max}=\dfrac{PL^{3}}{3EI}\)

Load at Any factor:

\(𝛿_{max}=\dfrac{Pa^{2}\left(3L-a\right)}{6EI}\)

Uniform Load:

Uniformly varying Load (Case 1):

\(𝛿_{max}=\dfrac{wL^{4}}{30EI}\)

Uniformly varying Load (Case 2):

\(𝛿_{max}=\dfrac{11wL^{4}}{120EI}\)

Moment Load at quit:

\(𝛿_{max}=\dfrac{ML^{2}}{2EI}\)

The way to Use This Beam Deflection Calculator?

To apply this beam deflection calculator, comply with the underneath-stated steps:

  • choose the “Beam type” and “Load type.”
  • input the duration of the span and the point load.
  • enter the modulus of elasticity and moment of inertia.
  • Hit the “calculate” button.