Use this online Gauss Seidel method calculator that allows you to resolve a system of linear simultaneous equations. You can also compute the values regarding to gauss seidel method problems by using our online power method calculator in a fraction of seconds.
“The method in which the first given system of linear equation is placed in diagonally dominant form is termed as Gauss-Seidel method”
Gauss Seidel iteration method is also known as the Liebmann method or the method of successive displacement which is an iterative method used to solve a system of linear equations.
Formula:
The formula to find the Gauss Seidel Method is given as: x^(k+1)= L*^-1(b-Uxk) Where
“If all the entries above the main diagonal are zero is termed as a lower triangular matrix”
$$ A = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 1 & 5 & 0 \\ 1 & -1 & -2 \end{array}\right] $$
“Similarly if all the entries below the main diagonal are zero is known as upper triangular matrix”
$$ A = \left[\begin{array}{ccc} 2 & -1 & 3 \\ 0 & 5 & 2\\ 0 & 0 & -2 \end{array}\right] $$
Let’s discuss the Gauss Seidel Iterative Method Algorithm regarding the coefficient of variables. Following are the steps to calculate it easily.
Besides, our online gauss seidel method calculator also supports Gauss Seidel Iterative Method Algorithm and you can calculate it in a couple of seconds.
$$ 1x_1 + 2x_2 = 7 8x_1 + 9x_2 = 7 $$
Solution:
$$ X = A^-1b \begin{bmatrix}783061.99 \\ -696054.33 \\\end{bmatrix} x_1 = 783061.99 x_2 = -696054.33 $$
Upper triangular component L
$$ \begin{bmatrix}0 & 2 \\ 0 & 0 \\\end{bmatrix} $$
Lower triangular component T
$$ \begin{bmatrix} 1 & 0 \\ 8 & 9 \\\end{bmatrix} $$
Inverse of L*-1
$$ \begin{bmatrix} 1 & 0 \\ -0.89 & 0.11 \\\end{bmatrix} $$
Calculation of T
$$ -\begin{bmatrix} 1 & 0 \\ -0.89 & 0.11 \\\end{bmatrix} \times \begin{bmatrix}0 & 2 \\ 0 & 0 \\\end{bmatrix}= \begin{bmatrix}0 & -2 \\ 0 & 1.78 \\\end{bmatrix} $$
Calculation of C
$$ \begin{bmatrix}1 & 0 \\ -0.89 & 0.11 \\\end{bmatrix} \times \begin{bmatrix} 7 \\ 7 \\ 7 \\\end{bmatrix} = \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} $$
Gauss Seidel Algorithm
$$ \times^{(0)}= \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} $$ $$ \times^{(1)}= \begin{bmatrix} 0 & -2 \\ 0 & 1.78 \\\end{bmatrix} \times \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 17.889 \\ -15.123 \\\end{bmatrix} $$ $$ \times^{(2)}= \begin{bmatrix} 0 & -2 \\ 0 & 1.78 \\\end{bmatrix} \times \begin{bmatrix} 17.889 \\ -15.123 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix}37.247 \\ -32.331 \\\end{bmatrix} $$ $$ \times^{(3)}= \begin{bmatrix} 0 & -2 \\ 0 & 1.78 \\\end{bmatrix} \times \begin{bmatrix} 37.247 \\ -32.331 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 71.661 \\ -62.921 \\\end{bmatrix} $$ $$ \times^{(4)}= \begin{bmatrix} 0 & -2 \\ 0 & 1.78 \\\end{bmatrix} \times \begin{bmatrix} 71.661 \\ -62.921 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 132.842 \\ -117.304 \\\end{bmatrix} $$ $$ \times^{(5)}= \begin{bmatrix} 0 & -2 \\ 0 & 1.78 \\\end{bmatrix} \times \begin{bmatrix} 132.842 \\ -117.304 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 241.608 \\ -213.985 \\\end{bmatrix} $$ $$ \times^{(6)}= \begin{bmatrix} 0 & -2 \\ 0 & 1.78 \\\end{bmatrix} \times \begin{bmatrix} 241.608 \\ -213.985 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 434.97 \\ -385.862 \\\end{bmatrix} $$ $$ \times^{(7)}= \begin{bmatrix} 0 & -2 \\ 0 & 1.78 \\\end{bmatrix} \times \begin{bmatrix} 434.97 \\ -385.862 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 778.725 \\ -691.422 \\\end{bmatrix} $$ $$ \times^{(8)}= \begin{bmatrix} 0 & -2 \\ 0 & 1.78 \\\end{bmatrix} \times \begin{bmatrix} 778.725 \\ -691.422 \\\end{bmatrix} + \begin{bmatrix} 7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 1389.844 \\ -1234.639 \\\end{bmatrix} $$ $$ \times^{(9)}= \begin{bmatrix} 0 & -2 \\ 0 &1.78 \\\end{bmatrix} \times \begin{bmatrix} 1389.844 \\ -1234.639 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 2476.278 \\ -2200.358 \\\end{bmatrix} $$ $$ \times^{(10)}= \begin{bmatrix} 0 & -2 \\ 0 & 1.78 \\\end{bmatrix} \times \begin{bmatrix} 2476.278 \\ -2200.358 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 4407.716 \\ -3917.192 \\\end{bmatrix} $$ $$ \times^{(11)}= \begin{bmatrix} 0 & -2 \\ 0 &1.78 \\\end{bmatrix} \times \begin{bmatrix} 4407.716 \\ -3917.192 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 7841.384 \\ -6969.341 \\\end{bmatrix} $$ $$ \times^{(12)}= \begin{bmatrix} 0 & -2 \\ 0 & 1.78 \\\end{bmatrix} \times \begin{bmatrix} 7841.384 \\ -6969.341 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 13945.683 \\ -12395.385 \\\end{bmatrix} $$ $$ \times^{(13)}= \begin{bmatrix} 0 & -2 \\ 0 & 1.78 \\\end{bmatrix} \times \begin{bmatrix} 13945.683 \\ -12395.385 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 24797.769 \\ -22041.684 \\\end{bmatrix} $$ $$ \times^{(14)}= \begin{bmatrix} 0 & -2 \\ 0 & 1.78 \\\end{bmatrix} \times \begin{bmatrix} 24797.769 \\ -22041.684 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 44090.367 \\ -39190.66 \\\end{bmatrix} $$ $$ \times^{(15)}= \begin{bmatrix} 0 & -2 \\ 0 & 1.78 \\\end{bmatrix} \times \begin{bmatrix} 44090.367 \\ -39190.66 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 78388.319 \\ -69677.728 \\\end{bmatrix} $$ $$ \times^{(16)}= \begin{bmatrix} 0 & -2 \\ 0 & 1.78 \\\end{bmatrix} \times \begin{bmatrix} 78388.319 \\ -69677.728 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 139362.457 \\ -123876.962 \\\end{bmatrix} $$ $$ \times^{(17)}= \begin{bmatrix} 0 & -2 \\ 0 & 1.78 \\\end{bmatrix} \times \begin{bmatrix} 139362.457 \\-123876.962 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 247760.923 \\ -220231.154 \\\end{bmatrix} $$ $$ \times^{(18)}= \begin{bmatrix} 0 & -2 \\ 0 & 1.78 \\\end{bmatrix} \times \begin{bmatrix} 247760.923 \\ -220231.154 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 440469.308 \\ -391527.496 \\\end{bmatrix} $$ $$ \times^{(19)}= \begin{bmatrix} 0 & -2 \\ 0 & 1.78 \\\end{bmatrix} \times \begin{bmatrix} 440469.308 \\ -391527.496 \\\end{bmatrix} + \begin{bmatrix}7 \\ -5.44 \\\end{bmatrix} = \begin{bmatrix} 783061.991 \\ -696054.326 \\\end{bmatrix} $$ However, you can use our gaussian elimination with the partial pivoting calculator to calculate the values of Guass Seidel method in a fraction of seconds.
This online power method calculator lets you perform calculations by simply entering the following inputs:
Inputs:
Outputs: Gauss Seidel method calculator calculates the following results:
You can also calculate the resolving systems of equations with the help of the gaussian elimination calculator.
Yes, Gauss Jacobi or Jacobi method is typically an iterative method that is used for solving equations of the diagonally dominant system of linear equations. And, you can calculate the values of the Gauss Siedal method with respect to the iterative method by using this gauss seidel method calculator
The difference between Jacobi and Gauss-Seidel methods is that in the Jacobi method the variable values are not modified until the next iteration. While in the Gauss Seidel method the variable values are modified as soon as the new value is considered. You can calculate the values regarding the Gauss Seidel method by using our gauss seidel method calculator
The gauss-Seidel method is more efficient as compared to the Jacobi method since the Gauss-Seidel method requires less number of iterations to combine the actual solution with a certain degree of accuracy. We provide you with an online gauss seidel method calculator to make calculations regarding gauss seidel method problems swiftly.
The disadvantage of the Jacobi method includes that after the modified value of a variable is estimated in the present iteration, it is not used up to the next iteration. In simple words, the value of all the variables which are used in the current iteration is from the previous iteration, hence increasing the number of iterations to reach the exact solution.
Gauss-elimination is the direct method while Gauss-seidel is the iterative method. These two methods are different from each other and are commonly used for different purposes.
The gauss seidel method is applicable if it follows strictly diagonally dominant or symmetric definite matrices.
Gauss-Seidel Method is commonly used to find the linear system Equations. This method is given and named by German Scientists Carl Friedrich Gauss and Philipp Ludwig Siedel. Generally, the gauss seidel method is applicable if iteration to solve n linear equations with unknown variables. This method is very simple and calculates the values with the help of our online Gauss Seidel method calculator with a couple of steps.
From the source of Wikipedia: Gauss–Seidel method, Algorithm, Examples From the source of sciencedirect.com: Iterative Methods of Solution, Solution to a System of Linear Algebraic Equations