Choose the input form and enter coefficients in designated fields. The parabola calculator will instantly determine parabola-related parameters and displays the graph of the parabolic expressions.
An online parabola calculator finds the standard and vertex parabolic equations and calculates the focus, direction, vertex, and important points of the parabola. Additionally, the parabola grapher displays the graph for the given equation.
It is defined as a special curve that has shaped like an arch. It is one of the types of conic sections. This symmetrical plane curve made by the intersection of a right circular cone with a plane surface. This U-shaped curve has some particular properties. In short, it can be concluded that any point on this curve is at equal distance from:
The standard form to represent this curve is the equation for parabola. Whereas it can be calculated via the parabola equation. All those calculations that involve parabola can be made easy by using a parabola calculator.
However, a parabola equation finder will support calculations where you need to apply the standard form.
Well, the Quadratic Formula Calculator helps to solve a given quadratic equation by using the quadratic equation formula.
Parabola equation in vertex form: \( x = a(y-k)^2+ h \)
Even the parabola calculator helps to turn the equation into the vertex form through which you can readily find the crucial points of the parabola.
Well, we can evaluate the axis of symmetry, focus, directrix, vertex, x intercept, y intercept by using the parabola formula in the form of \( x = y^2 + bx + c \).
However, an online Discriminant Calculator helps to calculate the discriminant of the quadratic polynomial as well as higher degree polynomials.
Find axis of symmetry, y-intercept, x-intercept, directrix, focus and vertex for the parabola equation \( x = 11y^2 + 10y + 16 \)?
Given Parabola equation is \( x = 11y^2 + 10y + 16 \).
The standard form of the equation is \( x = ay^2 + by + c \).
So,
$$ a = 11, b = 10, c = 16 $$
The parabola equation in vertex form is \( x = a(y-h)^2 + k \)
$$ h = \frac {-b}{(2a)} = \frac {-10} {(2.11)} = \frac {-10}{ 22}$$
$$h = \frac {-5}{11}$$
$$k = c-\frac{b^2} { (4a)} = 16 - \frac {100} {(4.11)}$$
$$ = \frac {704- 100} {44} = \frac {604} {44} = \frac {151}{44}$$
Vertex is \( (\frac{-5}{11}, \frac{151}{11}) \)
The focus of x coordinate = \( \frac{-b} {2a} = \frac {-5}{11} \)
Focus of y coordinate is = \( c - \frac {(b^2 - 1)} {(4a)} \)
$$= 16 - \frac {(100 - 1)} {(4.11)} = \frac {16- 99}{44}$$
$$= \frac{704-99} {44} = \frac{605}{44} => \frac {55}{4}$$
Focus is \( (\frac{-5}{11}, \frac{55}{4}) \)
Directrix equation \( y = c - \frac {(b^2 + 1)}{(4a)} \)
$$ = 16 - (100 + 1) / (4.11) = 16- 101/44$$
$$= 704-101/44 = \frac{603}{44} $$
$$ Axis of Symmetry = -b/ 2a = \frac{-5}{11}$$
for y intercept put x is equal to 0 in equation
$$y = 11(0)^2 + 10(0) + 16$$
$$y = 16$$
now x intercept put y is equal to 0 in equation
$$0 = 5x^2 + 4x + 10$$
$$No x-intercept.$$
However, an Online Hyperbola Calculator will help you to determine the center, eccentricity, focal parameter, major, and asymptote for given values in the hyperbola equation.
Take a standard form of parabola equation: \( (x - h)2 = 4p (y - k) \)
If we rotate the parabola, then its vertex is: \( (h,k) \). However, the axis of symmetry is parallel to the x-axis, and its equation will be: \( (y - k)2 = 4p (x - h)\) ,
Furthermore, the Directrix of a parabola can also be calculated by a simple equation that is: \(y = c - \frac{(b² + 1)}{(4a)}\) .
Parabola equation calculator makes the calculation faster and error-free as it uses the maths parabola equation. To get convenience, you need to follow these steps:
The Parabola equation calculator computes:
Whenever the distance between the focus and parabola directrix increases, |a| will decrease. It means that the parabola gets widen with the increase of distance among its two parameters.
For quick and easy calculations, you can use an online parabola grapher that plots the graphical representation of the given parabola equation. However, for manual plotting of parabola graph you have to follow some steps:
The first type of transformation is known as Translation. It shifts a node from one position to the other along with one of the axes that are related to its initial position.
The second type is Rotation. It moves the node in a circle around a pivot point.
Translating a parabola vertically gives you an opportunity to produce a new parabola. It will be the same as the basic parabola. In the same way, you can translate the parabola horizontally.
Parabola calculator used to get quick results and obtain the graph for any given parabolic equation. This parabola equation finder makes your calculation faster and easy by solving all the related properties of the parabolic equation. It lets you understand how to put the values in the parabola formula as well. So, this tool always ready to provide its services to everyone in the blink of an eye and without any cost.
From the source of Wikipedia: Cartesian coordinate system, Similarity to the unit parabola, Position of the focus.
From the source of Paul's online Notes: Parabolas, Sketching Parabolas, Axis direction.
From the source of OER Services: Graphing Parabolas with Vertices at the Origin, Standard forms of parabolas with vertex, The x-axis as the axis of symmetry.