Technical Calculator

SAS Triangle Calculator

SAS Triangle

add to favorites Add to favorites

SAS Triangle?

In Trigonometry, SAS corresponds to a facet-attitude-side triangle.

The way to clear up SAS Triangle?

What in case you consider how to locate the angle of a triangle given 2 aspects and 1 perspective. allow us to let you know!

Suppose we must solve triangle SAS given as under:

We are given:

\(a = 5\)

\(b = 7\)

\(γ = 45^{\text{o}}\)

Third Side c:

By using the law of cosines:

\(c = \sqrt{\left(5\right)^{2} + \left(7\right)^{2} - 2 \cdot 5 \cdot 7 \cdot \cos\left(45^{\text{o}}\right)}\)

\(c = \sqrt{25 + 49 - 70 \cdot 0.707}\)

\(c = \sqrt{25 + 49 - 49.49}\)

\(c = \sqrt{24.51}\)

\(c = 4.95\)

Perimeter:

\(p = a + b + c\)

\(p = 5 + 7 + 4.95\)

\(p = 16.95\)

Semiperimeter:

\(s = \dfrac{p}{2}\)

\(s = \dfrac{16.95}{2}\)

\(s = 8.475\)

Area:

By using Heron’s formula: \(A = \sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}\)

\(A = \sqrt{8.475 \cdot \left(8.475 - 5\right) \cdot \left(8.475 - 7\right) \cdot \left(8.475 - 4.95\right)}\)

\(A = \sqrt{8.475 \cdot 3.475 \cdot 1.475 \cdot 3.525}\)

\(A = \sqrt{153.3}\)

\(A = 12.38\)

Height of Triangle:

\(h_{a} = \dfrac{2A}{a}\)

\(h_{a} = \dfrac{2 \cdot 12.38}{5}\)

\(h_{a} = 4.952\)

\(h_{b} = \dfrac{2A}{b}\)

\(h_{b} = \dfrac{2 \cdot 12.38}{7}\)

\(h_{b} = 3.537\)

\(h_{c} = \dfrac{2A}{c}\)

\(h_{c} = \dfrac{2 \cdot 12.38}{4.95}\)

\(h_{c} = 5.004\)

Inner Angles:

By using the law of sines:

\(\dfrac{b}{\sinꞵ} = \dfrac{c}{\sin\gamma}\)

\(sinꞵ = \dfrac{b}{c} \cdot \sin\gamma\)

\(sinꞵ = \dfrac{7}{4.95} \cdot \sin\left(45^{\text{o}}\right)\)

\(sinꞵ = 1.414 \cdot 0.707\)

\(sinꞵ = 1\)

\(ꞵ = 90^{\text{o}}\)

Now using the supplementary angle measurement:

\(\alpha + ꞵ + \gamma = 180^{\text{o}}\)

\(\alpha + 90^{\text{o}} + 45^{\text{o}} = 180^{\text{o}}\)

\(\alpha = 45^{\text{o}}\)

Inradius:

\(r = \dfrac{A}{s}\)

\(r = \dfrac{12.38}{8.475}\)

\(r = 1.46\)

Circumradius:

\(R = \dfrac{a \cdot b \cdot c}{4 \cdot r \cdot s}\)

\(R = \dfrac{5 \cdot 7 \cdot 4.95}{4 \cdot 1.46 \cdot 8.475}\)

\(R = 7.03\)

Medians:

\(m_{a} = \sqrt{\dfrac{2b^2 + 2c^2 - a^2}{2}}\)

\(m_{a} = \sqrt{\dfrac{2 \cdot 7^2 + 2 \cdot 4.95^2 - 5^2}{2}}\)

\(m_{a} = 6.85\)

\(m_{b} = \sqrt{\dfrac{2c^2 + 2a^2 - b^2}{2}}\)

\(m_{b} = \sqrt{\dfrac{2 \cdot 4.95^2 + 2 \cdot 5^2 - 7^2}{2}}\)

\(m_{b} = 5.12\)

\(m_{c} = \sqrt{\dfrac{2a^2 + 2b^2 - c^2}{2}}\)

\(m_{c} = \sqrt{\dfrac{2 \cdot 5^2 + 2 \cdot 7^2 - 4.95^2}{2}}\)

\(m_{c} = 6.98\)

How Does SAS Triangle Calculator work?

If you want to use our SAS calculator, examine on and apprehend the following guide!

Input:

  • Input side and their associated perspective degree
  • Click the calculate button

Output:

  • The facet perspective aspect calculator complete the solution of SAS triangle