In numerical analysis, the trapezoidal rule is a technique for estimating the specific fundamental.
∫^x_y f(y) dy
The trapezoid rule works with the aid of estimating the area beneath the graph of a feature f(y) as a trapezium and computing its place with:
∫^x_y f(j) dj = ( x – y) . f(x) + f(y) / 2
The trapezoidal rule calculator used the Trapezium method to estimate the exact integrals.
Observe these tips to calculate any feature region the use of trapezoidal rule manually.
$$∫^x_y f(a)da ≈ Δa/2 [f(a^0) + 2f(a^1) +. . . +2f(a^{n-1}) + f(x^n), \text { where} , Δa = (y-x)/n.$$
Example:
Use the Trapezoidal Rule with \( n = 4 \) to estimate:
$$ \int_{x=0}^{y=2} \sqrt{1 + \cos(2x)} \, dx $$
Solution:
The function \( f(x) \) is:
$$ f(x) = \sqrt{1 + \cos(2x)} $$
Given: \( x = 0 \), \( y = 2 \), \( n = 4 \).
According to the Trapezoidal Rule:
$$ \int_x^y f(x) \, dx \approx \frac{\Delta x}{2} \left[ f(x^0) + 2f(x^1) + \dots + 2f(x^{n-1}) + f(x^n) \right] $$
Calculate \( \Delta x \):
$$ \Delta x = \frac{y - x}{n} = \frac{2 - 0}{4} = 0.5 $$
Divide the interval \([0, 2]\) into \( n = 4 \) subintervals of length \( \Delta x = 0.5 \), with endpoints:
$$ x = 0, 0.5, 1.0, 1.5, 2.0 $$
Evaluate the function at these endpoints:
$$ f(x^0) = f(0) = \sqrt{1 + \cos(2(0))} = \sqrt{1 + 1} = \sqrt{2} \approx 1.4142 $$
$$ 2f(x^1) = 2f(0.5) = 2 \cdot \sqrt{1 + \cos(2(0.5))} = 2 \cdot \sqrt{1 + \cos(1)} \approx 2 \cdot 1.4978 = 2.9956 $$
$$ 2f(x^2) = 2f(1.0) = 2 \cdot \sqrt{1 + \cos(2(1.0))} = 2 \cdot \sqrt{1 + \cos(2)} \approx 2 \cdot 1.3254 = 2.6508 $$
$$ 2f(x^3) = 2f(1.5) = 2 \cdot \sqrt{1 + \cos(2(1.5))} = 2 \cdot \sqrt{1 + \cos(3)} \approx 2 \cdot 1.0819 = 2.1638 $$
$$ f(x^4) = f(2.0) = \sqrt{1 + \cos(2(2.0))} = \sqrt{1 + \cos(4)} \approx 1.4162 $$
Now calculate the sum:
$$ \Delta x / 2 = 0.5 / 2 = 0.25 $$
$$ \int_x^y f(x) \, dx \approx 0.25 \cdot (1.4142 + 2.9956 + 2.6508 + 2.1638 + 1.4162) $$
$$ \approx 0.25 \cdot 10.6406 = 2.6602 $$
Final Answer: The approximate value of the integral \( \int_{0}^{2} \sqrt{1 + \cos(2x)} \, dx \) using the Trapezoidal Rule is \( 2.6602 \).
Here you can also verify the results using an online trapezoidal rule calculator for quick computation.
Simpson's Rule may be called Parabolic Rule. but, the trapezoidal rule may be referred to as the Trapezoid rule.
while we work with quadratic features, the Simpsons rule offers the exceptional estimation and the Trapezoidal supplied the worst approximation. As properly, for the trigonometric features, the Simpsons approach also gave the most correct estimation even as the Trapezoid gave the least accurate estimation.