The calculator will calculate the voltage drop, its percentage, and resistivity of any wire piece. based on the NEC or wire resistivity data you provide.
“it is the overall lack of the voltage due to the internal impedance of the circuit”
\(V_{drop\left(V\right)} = I_{cable\left(A\right)} * R_{wire\left(ohms\right)}\) \(V_{drop\left(V\right)} = I_{wire\left(A\right)} * \left(2 * L_{\left(ft\right)} * \frac{R_{wire\left(\frac{Ω}{kft}\right)}}{1000_{\left(\frac{ft}{kft}\right)}}\right)\) \(V_{drop\left(V\right)} = I_{wire\left(A\right)} * R_{wire\left(Ω\right)}\) \(V_{drop\left(V\right)} = I_{wire\left(A\right)} * \left(2 * L_{\left(m\right)} * \frac{R_{cable\left(\frac{ohms}{km}\right)}}{1000_{\left(\frac{m}{km}\right)}}\right)\)
\(V_{drop\left(V\right)} = \sqrt{3} * I_{wire\left(A\right)} * R_{wire\left(Ω\right)}\) \(V_{drop\left(V\right)} = 1.732 * I_{wire\left(A\right)} * \left(L_{\left(ft\right)} * \frac{R_{wire\left(\frac{Ω}{kft}\right)}}{1000_{\left(\frac{ft}{kft}\right)}}\right)\) \(V_{drop\left(V\right)} = \sqrt{3} * I_{wire\left(A\right)} * R_{wire\left(Ω\right)}\) \(V_{drop\left(V\right)} = 1.732 * I_{wire\left(A\right)} * \left(L_{\left(m\right)} * \frac{R_{wire\left(\frac{ohms}{km}\right)}}{1000_{\left(\frac{m}{km}\right)}}\right)\)
Regardless of the section is, the calculator will take multiple seconds to show the actual loss in the voltage transmission.
For a cable having a diameter in inches and n gauges:
\(d_{n\left(in\right)} = 0.005 inches * 92^{\frac{\left(36-n\right)}{39}}\)
\(d_{n\left(mm\right)} = 0.127 mm * 92^{\frac{\left(36-n\right)}{39}}\)
\(A_{n\left(kcmil\right)} = 1000 * d_{n}^{2} = 0.025 in^{2} * 92^{\frac{\left(36-n\right)}{19.5}}\) \(A_{n\left(in^{2}\right)} = \left(\frac{\pi}{4}\right) * d_{n}^{2} = 0.000019635 in^{2} * 92^{\frac{\left(36-n\right)}{19.5}}\) \(A_{n\left(mm^{2}\right)} = \left(\frac{\pi}{4}\right) * d_{n}^{2} = 0.000019635 mm^{2} * 92^{\frac{\left(36-n\right)}{19.5}}\)
\(R_{n\left(\frac{Ω}{kft}\right)} = 0.3048 * 10^{9} * \frac{ρ\left(Ω.m\right)}{25.4^{2} * A_{n\left(in^{2}\right)}}\)
Wire Material | Current (A) | Wire Length (m) | Resistance (Ω/m) | Voltage Drop Formula |
---|---|---|---|---|
Copper | 10 | 50 | 0.017 | \( V = I \times R \times L \) |
Aluminum | 15 | 30 | 0.028 | \( V = I \times R \times L \) |
Silver | 20 | 20 | 0.016 | \( V = I \times R \times L \) |
Wire Gauge | Current (A) | Length (m) | Resistance (Ω/km) | Voltage Drop (V) |
---|---|---|---|---|
10 AWG | 10 | 40 | 3.28 | \( V = I \times R \times (L/1000) \) |
12 AWG | 15 | 50 | 5.21 | \( V = I \times R \times (L/1000) \) |
14 AWG | 20 | 25 | 8.29 | \( V = I \times R \times (L/1000) \) |
while the capacity at the end of the cord gets higher than the capability on the start, then it gives upward push to the capacity voltage drop.
The space is without delay proportional to the resistance and while the resistance will increase, the Voltage drop can even get most.
You have to keep checking the drop with the calculator to analyze higher.
AWG | Diameter | Turns of cable | Area | Copper resistance | ||||
inch | mm | per inch | per cm | kcmil | mm2 | Ω/km | Ω/1000ft | |
0000 (4/0) | 0.4600 | 11.684 | 2.17 | 0.856 | 212 | 107 | 0.1608 | 0.04901 |
000 (3/0) | 0.4096 | 10.404 | 2.44 | 0.961 | 168 | 85.0 | 0.2028 | 0.06180 |
00 (2/0) | 0.3648 | 9.266 | 2.74 | 1.08 | 133 | 67.4 | 0.2557 | 0.07793 |
0 (1/0) | 0.3249 | 8.252 | 3.08 | 1.21 | 106 | 53.5 | 0.3224 | 0.09827 |
1 | 0.2893 | 7.348 | 3.46 | 1.36 | 83.7 | 42.4 | 0.4066 | 0.1239 |
2 | 0.2576 | 6.544 | 3.88 | 1.53 | 66.4 | 33.6 | 0.5127 | 0.1563 |
3 | 0.2294 | 5.827 | 4.36 | 1.72 | 52.6 | 26.7 | 0.6465 | 0.1970 |
4 | 0.2043 | 5.189 | 4.89 | 1.93 | 41.7 | 21.2 | 0.8152 | 0.2485 |
5 | 0.1819 | 4.621 | 5.50 | 2.16 | 33.1 | 16.8 | 1.028 | 0.3133 |
6 | 0.1620 | 4.115 | 6.17 | 2.43 | 26.3 | 13.3 | 1.296 | 0.3951 |
7 | 0.1443 | 3.665 | 6.93 | 2.73 | 20.8 | 10.5 | 1.634 | 0.4982 |
8 | 0.1285 | 3.264 | 7.78 | 3.06 | 16.5 | 8.37 | 2.061 | 0.6282 |
9 | 0.1144 | 2.906 | 8.74 | 3.44 | 13.1 | 6.63 | 2.599 | 0.7921 |
10 | 0.1019 | 2.588 | 9.81 | 3.86 | 10.4 | 5.26 | 3.277 | 0.9989 |
11 | 0.0907 | 2.305 | 11.0 | 4.34 | 8.23 | 4.17 | 4.132 | 1.260 |
12 | 0.0808 | 2.053 | 12.4 | 4.87 | 6.53 | 3.31 | 5.211 | 1.588 |
13 | 0.0720 | 1.828 | 13.9 | 5.47 | 5.18 | 2.62 | 6.571 | 2.003 |
14 | 0.0641 | 1.628 | 15.6 | 6.14 | 4.11 | 2.08 | 8.286 | 2.525 |
15 | 0.0571 | 1.450 | 17.5 | 6.90 | 3.26 | 1.65 | 10.45 | 3.184 |
16 | 0.0508 | 1.291 | 19.7 | 7.75 | 2.58 | 1.31 | 13.17 | 4.016 |
17 | 0.0453 | 1.150 | 22.1 | 8.70 | 2.05 | 1.04 | 16.61 | 5.064 |
18 | 0.0403 | 1.024 | 24.8 | 9.77 | 1.62 | 0.823 | 20.95 | 6.385 |
19 | 0.0359 | 0.912 | 27.9 | 11.0 | 1.29 | 0.653 | 26.42 | 8.051 |
20 | 0.0320 | 0.812 | 31.3 | 12.3 | 1.02 | 0.518 | 33.31 | 10.15 |
21 | 0.0285 | 0.723 | 35.1 | 13.8 | 0.810 | 0.410 | 42.00 | 12.80 |
22 | 0.0253 | 0.644 | 39.5 | 15.5 | 0.642 | 0.326 | 52.96 | 16.14 |
23 | 0.0226 | 0.573 | 44.3 | 17.4 | 0.509 | 0.258 | 66.79 | 20.36 |
24 | 0.0201 | 0.511 | 49.7 | 19.6 | 0.404 | 0.205 | 84.22 | 25.67 |
25 | 0.0179 | 0.455 | 55.9 | 22.0 | 0.320 | 0.162 | 106.2 | 32.37 |
26 | 0.0159 | 0.405 | 62.7 | 24.7 | 0.254 | 0.129 | 133.9 | 40.81 |
27 | 0.0142 | 0.361 | 70.4 | 27.7 | 0.202 | 0.102 | 168.9 | 51.47 |
28 | 0.0126 | 0.321 | 79.1 | 31.1 | 0.160 | 0.0810 | 212.9 | 64.90 |
29 | 0.0113 | 0.286 | 88.8 | 35.0 | 0.127 | 0.0642 | 268.5 | 81.84 |
30 | 0.0100 | 0.255 | 99.7 | 39.3 | 0.101 | 0.0509 | 338.6 | 103.2 |
31 | 0.00893 | 0.227 | 112 | 44.1 | 0.0797 | 0.0404 | 426.9 | 130.1 |
32 | 0.00795 | 0.202 | 126 | 49.5 | 0.0632 | 0.0320 | 538.3 | 164.1 |
33 | 0.00708 | 0.180 | 141 | 55.6 | 0.0501 | 0.0254 | 678.8 | 206.9 |
34 | 0.00630 | 0.160 | 159 | 62.4 | 0.0398 | 0.0201 | 856.0 | 260.9 |
35 | 0.00561 | 0.143 | 178 | 70.1 | 0.0315 | 0.0160 | 1079 | 329.0 |
36 | 0.00500 | 0.127 | 200 | 78.7 | 0.0250 | 0.0127 | 1361 | 414.8 |
37 | 0.00445 | 0.113 | 225 | 88.4 | 0.0198 | 0.0100 | 1716 | 523.1 |
38 | 0.00397 | 0.101 | 252 | 99.3 | 0.0157 | 0.00797 | 2164 | 659.6 |
39 | 0.00353 | 0.0897 | 283 | 111 | 0.0125 | 0.00632 | 2729 | 831.8 |
40 | 0.00314 | 0.0799 | 318 | 125 | 0.00989 | 0.00501 | 3441 | 1049 |
The reduction in electrical voltage is referred to as a voltage drop. The resistance of the wire can cause inefficient performance of electrical devices. Appliances and electrical systems may not work properly if the voltage drops too much. In long electrical circuits resistance increases with distance. In industrial settings excessive voltage drop can lead to overheating. It's important to calculate the voltage drop to prevent power inefficiencies and electrical dangers. Electricians and engineers use voltage drop calculations to improve wiring for homes, businesses and power grids. Understanding voltage drop can help maintain electrical efficiency, prevent damage to appliances, and ensure safety in electrical installations.
The formula V is used to calculate the voltage drop, I is the current in amperes, and R is the resistance of the conductor. In this formula, length is the one-way distance of the wire. Resistance can be affected by wire material, gauge size, and temperature. If a circuit carries 10A of current through a wire with a resistance of less than 0. 25, the voltage drop would be less than 5V. Ensuring the right wire size reduces energy loss when there is a high voltage drop. This calculator makes it easier to design efficient electrical systems.
The factors that influence voltage drop are wire length, wire gauge, material type, current load, and temperature. The longer wires have a higher resistance. The thicker wires reduce resistance. Compared to aluminum, copper wires are better conductors. Larger wires are needed for high-power devices because of the higher electrical loads. The higher the temperature, the greater the voltage drop. Proper consideration of these factors ensures efficient power delivery and prevents overheating. When designing electrical systems, professionals choose the right wire sizes and materials.
Choosing thicker wires (lower gauge), using shorter wire lengths, selecting high-conductivity materials like copper, and ensuring proper connections can all be used to reduce voltage drop. The thicker the wires, the better the current flow. The resistance that causes voltage loss is minimized by shorter wires. Because they conduct electricity more efficiently, copper conductors are preferred. Distribution of power across multiple circuits can help reduce electrical load. The electrical connections need to be tightened to ensure minimal resistance at joints. Transformer and voltage regulators are used in industrial and commercial settings. By implementing these measures, electrical systems are able to operate more efficiently.
Resistance increases with wire length, which leads to a major problem in long-distance electrical wiring. The longer the wire, the more power is lost before it reaches the end device. This can lead to inefficiency or even failure at appliances. In rural areas or large buildings, long cable runs can lead to excessive voltage drop. Higher voltage systems are used to compensate for the loss. Solar power systems, outdoor lighting, and industrial applications all require careful voltage drop calculations. If not managed, excessive voltage drop can lead to reduced lifespans of electrical components, motor overheating, and increased energy costs. Stable and efficient electrical performance is ensured by managing the voltage drop.