Technical Calculator

Capacitance Calculator

Enter the value of area, permittivity, and distance to get the overall capacitance of the capacitor through this tool.

F/m

add to favorites Add to favorites

Capacitance?

“it is the capability of a capacitor to store charge”

The capacitance of a capacitor is usually depending on two elements that consist of:

  • Dielectric medium
  • Distance between the capacitor plates

Parallel Plate Capacitor method:

Our parallel plate capacitor calculator makes use of the same old equation to calculate capacitor capacitance. but, in case your intention comes up with manual calculations, follow the method:

Capacitance = ​ε Area / Distance Or C = ε A / s

wherein;

ε = 8.854 pF / m

The above permittivity price is the usual that is used utilized by this capacitor capacitance calculator without a particular capacitance entered.

The way to locate Capacitance?

Essentially, capacitance is the ratio of the rate in a capacitor to the voltage throughout its plates. let us figure out via an instance!

Announcement:

If the area occupied by the capacitor plates is ready 125 mm^2 and the separation among plates is ready 7 mm, then how to calculate capacitance? (The relative permittivity of area is ready zero.000124 F/m.)

Solution:

the usage of the parallel plate capacitance system::

C = ε A / s

C = (0.000124 F/m * 125 mm^2) / 7mm

C = 0.0155 / 7 C = 0.00221 Farads

that is the specified capacitance at which the parallel plate capacitor will work commonly with out trouble.

Property Description Formula Example
Capacitance (C) Ability of a capacitor to store charge per unit voltage. C = Q / V If Q = 0.002 C and V = 10 V, then C = 0.0002 F (200 μF).
Charge (Q) Amount of electric charge stored on capacitor plates. Q = C × V If C = 50 μF and V = 12 V, then Q = 0.0006 C.
Voltage (V) Potential difference across the capacitor plates. V = Q / C If Q = 0.005 C and C = 25 μF, then V = 200 V.
Energy Stored (U) Energy stored in a capacitor's electric field. U = (1/2) C V² If C = 10 μF and V = 5 V, then U = 0.000125 J.
Parallel Capacitance (C_eq) Equivalent capacitance for capacitors in parallel. C_eq = C₁ + C₂ + ... + Cₙ If C₁ = 5 μF and C₂ = 10 μF, then C_eq = 15 μF.
Series Capacitance (C_eq) Equivalent capacitance for capacitors in series. 1/C_eq = 1/C₁ + 1/C₂ + ... + 1/Cₙ If C₁ = 8 μF and C₂ = 12 μF, then C_eq ≈ 4.8 μF.
Dielectric Constant (κ) Factor by which capacitance increases with a dielectric. C = κ C₀ If C₀ = 20 pF and κ = 5, then C = 100 pF.
Capacitor Plate Area (A) Surface area of capacitor plates. C = (ε₀ κ A) / d If ε₀ = 8.85×10⁻¹² F/m, A = 0.01 m², d = 0.001 m, κ = 3, then C ≈ 2.66×10⁻¹⁰ F.
Breakdown Voltage Maximum voltage before dielectric breakdown. V_max = E_max × d If E_max = 3×10⁶ V/m and d = 0.002 m, then V_max = 6000 V.
RC Time Constant (τ) Time for charge to decrease to 37% in an RC circuit. τ = R × C If R = 1 kΩ and C = 10 μF, then τ = 0.01 s.

Faqs:

What Is The Value of K In Capacitance?

  • For free space, k=1
  • For all other media, k>1

To accurately calculate capacitance with any value of k, you may better let this capacitance calculator do all maths for you.

what is a everyday Capacitance?

The regular capacitance price stages commonly from 1nF to 1µF.

uF/ MFD nF pF/ MMFD
1uF / MFD 1000nF 1000000pF(MMFD)
0.82uF / MFD 820nF 820000pF (MMFD)
0.8uF / MFD 800nF 800000pF (MMFD)
0.7uF / MFD 700nF 700000pF (MMFD)
0.68uF / MFD 680nF 680000pF (MMFD)
0.6uF / MFD 600nF 600000pF (MMFD)
0.56uF / MFD 560nF 560000pF (MMFD)
0.5uF / MFD 500nF 500000pF (MMFD)
0.47uF / MFD 470nF 470000pF (MMFD)
0.4uF / MFD 400nF 400000pF (MMFD)
0.39uF / MFD 390nF 390000pF (MMFD)
0.33uF / MFD 330nF 330000pF (MMFD)
0.3uF / MFD 300nF 300000pF (MMFD)
0.27uF / MFD 270nF 270000pF (MMFD)
0.25uF / MFD 250nF 250000pF (MMFD)
0.22uF / MFD 220nF 220000pF (MMFD)
0.2uF / MFD 200nF 200000pF (MMFD)
0.18uF / MFD 180nF 180000pF (MMFD)
0.15uF / MFD 150nF 150000pF (MMFD)
0.12uF / MFD 120nF 120000pF (MMFD)
0.1uF / MFD 100nF 100000pF (MMFD)
0.082uF / MFD 82nF 82000pF (MMFD)
0.08uF / MFD 80nF 80000pF (MMFD)
0.07uF / MFD 70nF 70000pF (MMFD)
0.068uF / MFD 68nF 68000pF (MMFD)
0.06uF / MFD 60nF 60000pF (MMFD)
0.056uF / MFD 56nF 56000pF (MMFD)
0.05uF / MFD 50nF 50000pF (MMFD)
0.047uF / MFD 47nF 47000pF (MMFD)
0.04uF / MFD 40nF 40000pF (MMFD)
0.039uF / MFD 39nF 39000pF (MMFD)
0.033uF / MFD 33nF 33000pF (MMFD)
0.03uF / MFD 30nF 30000pF (MMFD)
0.027uF / MFD 27nF 27000pF (MMFD)
0.025uF / MFD 25nF 25000pF (MMFD)
0.022uF / MFD 22nF 22000pF (MMFD)
0.02uF / MFD 20nF 20000pF (MMFD)
0.018uF / MFD 18nF 18000pF (MMFD)
0.015uF / MFD 15nF 15000pF (MMFD)
0.012uF / MFD 12nF 12000pF (MMFD)
0.01uF / MFD 10nF 10000pF (MMFD)
0.0082uF / MFD 8.2nF 8200pF (MMFD)
0.008uF / MFD 8nF 8000pF (MMFD)
0.007uF / MFD 7nF 7000pF (MMFD)
0.0068uF / MFD 6.8nF 6800pF (MMFD)
0.006uF / MFD 6nF 6000pF (MMFD)
0.0056uF / MFD 5.6nF 5600pF (MMFD)
0.005uF / MFD 5nF 5000pF (MMFD)
0.0047uF / MFD 4.7nF 4700pF (MMFD)
0.004uF / MFD 4nF 4000pF (MMFD)
0.0039uF / MFD 3.9nF 3900pF (MMFD)
0.0033uF / MFD 3.3nF 3300pF (MMFD)
0.003uF / MFD 3nF 3000pF (MMFD)
0.0027uF / MFD 2.7nF 2700pF (MMFD)
0.0025uF / MFD 2.5nF 2500pF (MMFD)
0.0022uF / MFD 2.2nF 2200pF (MMFD)
0.002uF / MFD 2nF 2000pF (MMFD)
0.0018uF / MFD 1.8nF 1800pF (MMFD)
0.0015uF / MFD 1.5nF 1500pF (MMFD)
0.0012uF / MFD 1.2nF 1200pF (MMFD)
0.001uF / MFD 1nF 1000pF (MMFD)
0.00082uF / MFD 0.82nF 820pF (MMFD)
0.0008uF / MFD 0.8nF 800pF (MMFD)
0.0007uF / MFD 0.7nF 700pF (MMFD)
0.00068uF / MFD 0.68nF 680pF (MMFD)
0.0006uF / MFD 0.6nF 600pF (MMFD)
0.00056uF / MFD 0.56nF 560pF (MMFD)
0.0005uF / MFD 0.5nF 500pF (MMFD)
0.00047uF / MFD 0.47nF 470pF (MMFD)
0.0004uF / MFD 0.4nF 400pF (MMFD)
0.00039uF / MFD 0.39nF 390pF (MMFD)
0.00033uF / MFD 0.33nF 330pF (MMFD)
0.0003uF / MFD 0.3nF 300pF (MMFD)
0.00027uF / MFD 0.27nF 270pF (MMFD)
0.00025uF / MFD 0.25nF 250pF (MMFD)
0.00022uF / MFD 0.22nF 220pF (MMFD)
0.0002uF / MFD 0.2nF 200pF (MMFD)
0.00018uF / MFD 0.18nF 180pF (MMFD)
0.00015uF / MFD 0.15nF 150pF (MMFD)
0.00012uF / MFD 0.12nF 120pF (MMFD)
0.0001uF / MFD 0.1nF 100pF (MMFD)
0.000082uF / MFD 0.082nF 82pF (MMFD)
0.00008uF / MFD 0.08nF 80pF (MMFD)
0.00007uF / MFD 0.07nF 70pF (MMFD)
0.000068uF / MFD 0.068nF 68pF (MMFD)
0.00006uF / MFD 0.06nF 60pF (MMFD)
0.000056uF / MFD 0.056nF 56pF (MMFD)
0.00005uF / MFD 0.05nF 50pF (MMFD)
0.000047uF / MFD 0.047nF 47pF (MMFD)
0.00004uF / MFD 0.04nF 40pF (MMFD)
0.000039uF / MFD 0.039nF 39pF (MMFD)
0.000033uF / MFD 0.033nF 33pF (MMFD)
0.00003uF / MFD 0.03nF 30pF (MMFD)
0.000027uF / MFD 0.027nF 27pF (MMFD)
0.000025uF / MFD 0.025nF 25pF (MMFD)
0.000022uF / MFD 0.022nF 22pF (MMFD)
0.00002uF / MFD 0.02nF 20pF (MMFD)
0.000018uF / MFD 0.018nF 18pF (MMFD)
0.000015uF / MFD 0.015nF 15pF (MMFD)
0.000012uF / MFD 0.012nF 12pF (MMFD)
0.00001uF / MFD 0.01nF 10pF (MMFD)
0.0000082uF / MFD 0.0082nF 8.2pF (MMFD)
0.000008uF / MFD 0.008nF 8pF (MMFD)
0.000007uF / MFD 0.007nF 7pF (MMFD)
0.0000068uF / MFD 0.0068nF 6.8pF (MMFD)
0.000006uF / MFD 0.006nF 6pF (MMFD)
0.0000056uF / MFD 0.0056nF 5.6pF (MMFD)
0.000005uF / MFD 0.005nF 5pF (MMFD)
0.0000047uF / MFD 0.0047nF 4.7pF (MMFD)
0.000004uF / MFD 0.004nF 4pF (MMFD)
0.0000039uF / MFD 0.0039nF 3.9pF (MMFD)
0.0000033uF / MFD 0.0033nF 3.3pF (MMFD)
0.000003uF / MFD 0.003nF 3pF (MMFD)
0.0000027uF / MFD 0.0027nF 2.7pF (MMFD)
0.0000025uF / MFD 0.0025nF 2.5pF (MMFD)
0.0000022uF / MFD 0.0022nF 2.2pF (MMFD)
0.000002uF / MFD 0.002nF 2pF (MMFD)
0.0000018uF / MFD 0.0018nF 1.8pF (MMFD)
0.0000015uF / MFD 0.0015nF 1.5pF (MMFD)
0.0000012uF / MFD 0.0012nF 1.2pF (MMFD)
0.000001uF / MFD 0.001nF 1pF (MMFD)

What is capacitance, and how is it measured.

Capacitance is the ability of a capacitor to store electrical charge. It's measured in units called farads (F), standard smaller amounts include microsfarads (µF), nanofarads (nF), and picofarads (pF). "Capacitance is related to the amount of stored charge versus the applied voltage in a system. Capacitors play a significant role in powered circuits, minimizing interference, and altering signals. " Capacitance depends on the size of the plates, the distance between them, and what material separates them.

How does a capacitance calculator work.

The capacitance measuring apparatus helps in assessing the storage capability of a capacitor using the formula. C = ε₀ × εr × A / d, where.

C = Capacitance (Farads). ε₀ = Permittivity of free space (8. 85 × 10⁻¹² F/m). εr = Relative permittivity (dielectric constant). A = Plate area (square meters). d = Distance between plates (meters). "Inserting these figures, this device offers precise energy storage estimations, beneficial for assembling computer systems. "What factors affect the capacitance of a capacitor. Several factors determine a capacitor’s capacitance.

Plate Area (A): Larger plates store more charge, increasing capacitance. Distance Between Plates (d): Smaller gaps between plates result in higher capacitance. Dielectric Material (εr): A higher dielectric constant increases capacitance. Temperature: Some dielectrics change properties with temperature variations, affecting capacitance. Using it outside its limits can damage it and make it worse. How do different capacitor types impact capacitance. Various capacitor types have different properties.

Ceramic Capacitors: Small, stable, and used for high-frequency applications.

Extremely large holding capacity but one-way use, require proper orientation. Tantalum Capacitors: More stable than electrolytic but expensive. Film Capacitors: Used in power circuits due to durability. Supercapacitors: Extremely high capacitance for energy storage applications. The appropriate capacitor variety relies on the device’s power level, frequency, and stability requirements. Why is capacitance important in electronic circuits. Capacitance plays a crucial role in various electronic applications.

Holds electricity for short time and even out electricity changes.

Helps in electronic devices to smooth out unstable power. Timing Circuits: Capacitance and resistance determine circuit timing in oscillators and timers. Bypass DC, let AC signals through in amplifiers. Resonant Circuits: Works with inductors in frequency-dependent applications like radios. Understanding capacitance helps in designing efficient and reliable electronic circuits.