Enter the value of area, permittivity, and distance to get the overall capacitance of the capacitor through this tool.
“it is the capability of a capacitor to store charge”
The capacitance of a capacitor is usually depending on two elements that consist of:
Our parallel plate capacitor calculator makes use of the same old equation to calculate capacitor capacitance. but, in case your intention comes up with manual calculations, follow the method:
Capacitance = ε Area / Distance Or C = ε A / s
wherein;
ε = 8.854 pF / m
The above permittivity price is the usual that is used utilized by this capacitor capacitance calculator without a particular capacitance entered.
Essentially, capacitance is the ratio of the rate in a capacitor to the voltage throughout its plates. let us figure out via an instance!
If the area occupied by the capacitor plates is ready 125 mm^2 and the separation among plates is ready 7 mm, then how to calculate capacitance? (The relative permittivity of area is ready zero.000124 F/m.)
Solution:
the usage of the parallel plate capacitance system::
C = ε A / s
C = (0.000124 F/m * 125 mm^2) / 7mm
C = 0.0155 / 7 C = 0.00221 Farads
that is the specified capacitance at which the parallel plate capacitor will work commonly with out trouble.
Property | Description | Formula | Example |
---|---|---|---|
Capacitance (C) | Ability of a capacitor to store charge per unit voltage. | C = Q / V | If Q = 0.002 C and V = 10 V, then C = 0.0002 F (200 μF). |
Charge (Q) | Amount of electric charge stored on capacitor plates. | Q = C × V | If C = 50 μF and V = 12 V, then Q = 0.0006 C. |
Voltage (V) | Potential difference across the capacitor plates. | V = Q / C | If Q = 0.005 C and C = 25 μF, then V = 200 V. |
Energy Stored (U) | Energy stored in a capacitor's electric field. | U = (1/2) C V² | If C = 10 μF and V = 5 V, then U = 0.000125 J. |
Parallel Capacitance (C_eq) | Equivalent capacitance for capacitors in parallel. | C_eq = C₁ + C₂ + ... + Cₙ | If C₁ = 5 μF and C₂ = 10 μF, then C_eq = 15 μF. |
Series Capacitance (C_eq) | Equivalent capacitance for capacitors in series. | 1/C_eq = 1/C₁ + 1/C₂ + ... + 1/Cₙ | If C₁ = 8 μF and C₂ = 12 μF, then C_eq ≈ 4.8 μF. |
Dielectric Constant (κ) | Factor by which capacitance increases with a dielectric. | C = κ C₀ | If C₀ = 20 pF and κ = 5, then C = 100 pF. |
Capacitor Plate Area (A) | Surface area of capacitor plates. | C = (ε₀ κ A) / d | If ε₀ = 8.85×10⁻¹² F/m, A = 0.01 m², d = 0.001 m, κ = 3, then C ≈ 2.66×10⁻¹⁰ F. |
Breakdown Voltage | Maximum voltage before dielectric breakdown. | V_max = E_max × d | If E_max = 3×10⁶ V/m and d = 0.002 m, then V_max = 6000 V. |
RC Time Constant (τ) | Time for charge to decrease to 37% in an RC circuit. | τ = R × C | If R = 1 kΩ and C = 10 μF, then τ = 0.01 s. |
To accurately calculate capacitance with any value of k, you may better let this capacitance calculator do all maths for you.
The regular capacitance price stages commonly from 1nF to 1µF.
uF/ MFD | nF | pF/ MMFD |
---|---|---|
1uF / MFD | 1000nF | 1000000pF(MMFD) |
0.82uF / MFD | 820nF | 820000pF (MMFD) |
0.8uF / MFD | 800nF | 800000pF (MMFD) |
0.7uF / MFD | 700nF | 700000pF (MMFD) |
0.68uF / MFD | 680nF | 680000pF (MMFD) |
0.6uF / MFD | 600nF | 600000pF (MMFD) |
0.56uF / MFD | 560nF | 560000pF (MMFD) |
0.5uF / MFD | 500nF | 500000pF (MMFD) |
0.47uF / MFD | 470nF | 470000pF (MMFD) |
0.4uF / MFD | 400nF | 400000pF (MMFD) |
0.39uF / MFD | 390nF | 390000pF (MMFD) |
0.33uF / MFD | 330nF | 330000pF (MMFD) |
0.3uF / MFD | 300nF | 300000pF (MMFD) |
0.27uF / MFD | 270nF | 270000pF (MMFD) |
0.25uF / MFD | 250nF | 250000pF (MMFD) |
0.22uF / MFD | 220nF | 220000pF (MMFD) |
0.2uF / MFD | 200nF | 200000pF (MMFD) |
0.18uF / MFD | 180nF | 180000pF (MMFD) |
0.15uF / MFD | 150nF | 150000pF (MMFD) |
0.12uF / MFD | 120nF | 120000pF (MMFD) |
0.1uF / MFD | 100nF | 100000pF (MMFD) |
0.082uF / MFD | 82nF | 82000pF (MMFD) |
0.08uF / MFD | 80nF | 80000pF (MMFD) |
0.07uF / MFD | 70nF | 70000pF (MMFD) |
0.068uF / MFD | 68nF | 68000pF (MMFD) |
0.06uF / MFD | 60nF | 60000pF (MMFD) |
0.056uF / MFD | 56nF | 56000pF (MMFD) |
0.05uF / MFD | 50nF | 50000pF (MMFD) |
0.047uF / MFD | 47nF | 47000pF (MMFD) |
0.04uF / MFD | 40nF | 40000pF (MMFD) |
0.039uF / MFD | 39nF | 39000pF (MMFD) |
0.033uF / MFD | 33nF | 33000pF (MMFD) |
0.03uF / MFD | 30nF | 30000pF (MMFD) |
0.027uF / MFD | 27nF | 27000pF (MMFD) |
0.025uF / MFD | 25nF | 25000pF (MMFD) |
0.022uF / MFD | 22nF | 22000pF (MMFD) |
0.02uF / MFD | 20nF | 20000pF (MMFD) |
0.018uF / MFD | 18nF | 18000pF (MMFD) |
0.015uF / MFD | 15nF | 15000pF (MMFD) |
0.012uF / MFD | 12nF | 12000pF (MMFD) |
0.01uF / MFD | 10nF | 10000pF (MMFD) |
0.0082uF / MFD | 8.2nF | 8200pF (MMFD) |
0.008uF / MFD | 8nF | 8000pF (MMFD) |
0.007uF / MFD | 7nF | 7000pF (MMFD) |
0.0068uF / MFD | 6.8nF | 6800pF (MMFD) |
0.006uF / MFD | 6nF | 6000pF (MMFD) |
0.0056uF / MFD | 5.6nF | 5600pF (MMFD) |
0.005uF / MFD | 5nF | 5000pF (MMFD) |
0.0047uF / MFD | 4.7nF | 4700pF (MMFD) |
0.004uF / MFD | 4nF | 4000pF (MMFD) |
0.0039uF / MFD | 3.9nF | 3900pF (MMFD) |
0.0033uF / MFD | 3.3nF | 3300pF (MMFD) |
0.003uF / MFD | 3nF | 3000pF (MMFD) |
0.0027uF / MFD | 2.7nF | 2700pF (MMFD) |
0.0025uF / MFD | 2.5nF | 2500pF (MMFD) |
0.0022uF / MFD | 2.2nF | 2200pF (MMFD) |
0.002uF / MFD | 2nF | 2000pF (MMFD) |
0.0018uF / MFD | 1.8nF | 1800pF (MMFD) |
0.0015uF / MFD | 1.5nF | 1500pF (MMFD) |
0.0012uF / MFD | 1.2nF | 1200pF (MMFD) |
0.001uF / MFD | 1nF | 1000pF (MMFD) |
0.00082uF / MFD | 0.82nF | 820pF (MMFD) |
0.0008uF / MFD | 0.8nF | 800pF (MMFD) |
0.0007uF / MFD | 0.7nF | 700pF (MMFD) |
0.00068uF / MFD | 0.68nF | 680pF (MMFD) |
0.0006uF / MFD | 0.6nF | 600pF (MMFD) |
0.00056uF / MFD | 0.56nF | 560pF (MMFD) |
0.0005uF / MFD | 0.5nF | 500pF (MMFD) |
0.00047uF / MFD | 0.47nF | 470pF (MMFD) |
0.0004uF / MFD | 0.4nF | 400pF (MMFD) |
0.00039uF / MFD | 0.39nF | 390pF (MMFD) |
0.00033uF / MFD | 0.33nF | 330pF (MMFD) |
0.0003uF / MFD | 0.3nF | 300pF (MMFD) |
0.00027uF / MFD | 0.27nF | 270pF (MMFD) |
0.00025uF / MFD | 0.25nF | 250pF (MMFD) |
0.00022uF / MFD | 0.22nF | 220pF (MMFD) |
0.0002uF / MFD | 0.2nF | 200pF (MMFD) |
0.00018uF / MFD | 0.18nF | 180pF (MMFD) |
0.00015uF / MFD | 0.15nF | 150pF (MMFD) |
0.00012uF / MFD | 0.12nF | 120pF (MMFD) |
0.0001uF / MFD | 0.1nF | 100pF (MMFD) |
0.000082uF / MFD | 0.082nF | 82pF (MMFD) |
0.00008uF / MFD | 0.08nF | 80pF (MMFD) |
0.00007uF / MFD | 0.07nF | 70pF (MMFD) |
0.000068uF / MFD | 0.068nF | 68pF (MMFD) |
0.00006uF / MFD | 0.06nF | 60pF (MMFD) |
0.000056uF / MFD | 0.056nF | 56pF (MMFD) |
0.00005uF / MFD | 0.05nF | 50pF (MMFD) |
0.000047uF / MFD | 0.047nF | 47pF (MMFD) |
0.00004uF / MFD | 0.04nF | 40pF (MMFD) |
0.000039uF / MFD | 0.039nF | 39pF (MMFD) |
0.000033uF / MFD | 0.033nF | 33pF (MMFD) |
0.00003uF / MFD | 0.03nF | 30pF (MMFD) |
0.000027uF / MFD | 0.027nF | 27pF (MMFD) |
0.000025uF / MFD | 0.025nF | 25pF (MMFD) |
0.000022uF / MFD | 0.022nF | 22pF (MMFD) |
0.00002uF / MFD | 0.02nF | 20pF (MMFD) |
0.000018uF / MFD | 0.018nF | 18pF (MMFD) |
0.000015uF / MFD | 0.015nF | 15pF (MMFD) |
0.000012uF / MFD | 0.012nF | 12pF (MMFD) |
0.00001uF / MFD | 0.01nF | 10pF (MMFD) |
0.0000082uF / MFD | 0.0082nF | 8.2pF (MMFD) |
0.000008uF / MFD | 0.008nF | 8pF (MMFD) |
0.000007uF / MFD | 0.007nF | 7pF (MMFD) |
0.0000068uF / MFD | 0.0068nF | 6.8pF (MMFD) |
0.000006uF / MFD | 0.006nF | 6pF (MMFD) |
0.0000056uF / MFD | 0.0056nF | 5.6pF (MMFD) |
0.000005uF / MFD | 0.005nF | 5pF (MMFD) |
0.0000047uF / MFD | 0.0047nF | 4.7pF (MMFD) |
0.000004uF / MFD | 0.004nF | 4pF (MMFD) |
0.0000039uF / MFD | 0.0039nF | 3.9pF (MMFD) |
0.0000033uF / MFD | 0.0033nF | 3.3pF (MMFD) |
0.000003uF / MFD | 0.003nF | 3pF (MMFD) |
0.0000027uF / MFD | 0.0027nF | 2.7pF (MMFD) |
0.0000025uF / MFD | 0.0025nF | 2.5pF (MMFD) |
0.0000022uF / MFD | 0.0022nF | 2.2pF (MMFD) |
0.000002uF / MFD | 0.002nF | 2pF (MMFD) |
0.0000018uF / MFD | 0.0018nF | 1.8pF (MMFD) |
0.0000015uF / MFD | 0.0015nF | 1.5pF (MMFD) |
0.0000012uF / MFD | 0.0012nF | 1.2pF (MMFD) |
0.000001uF / MFD | 0.001nF | 1pF (MMFD) |
Capacitance is the ability of a capacitor to store electrical charge. It's measured in units called farads (F), standard smaller amounts include microsfarads (µF), nanofarads (nF), and picofarads (pF). "Capacitance is related to the amount of stored charge versus the applied voltage in a system. Capacitors play a significant role in powered circuits, minimizing interference, and altering signals. " Capacitance depends on the size of the plates, the distance between them, and what material separates them.
The capacitance measuring apparatus helps in assessing the storage capability of a capacitor using the formula. C = ε₀ × εr × A / d, where.
C = Capacitance (Farads). ε₀ = Permittivity of free space (8. 85 × 10⁻¹² F/m). εr = Relative permittivity (dielectric constant). A = Plate area (square meters). d = Distance between plates (meters). "Inserting these figures, this device offers precise energy storage estimations, beneficial for assembling computer systems. "What factors affect the capacitance of a capacitor. Several factors determine a capacitor’s capacitance.
Plate Area (A): Larger plates store more charge, increasing capacitance. Distance Between Plates (d): Smaller gaps between plates result in higher capacitance. Dielectric Material (εr): A higher dielectric constant increases capacitance. Temperature: Some dielectrics change properties with temperature variations, affecting capacitance. Using it outside its limits can damage it and make it worse. How do different capacitor types impact capacitance. Various capacitor types have different properties.
Extremely large holding capacity but one-way use, require proper orientation. Tantalum Capacitors: More stable than electrolytic but expensive. Film Capacitors: Used in power circuits due to durability. Supercapacitors: Extremely high capacitance for energy storage applications. The appropriate capacitor variety relies on the device’s power level, frequency, and stability requirements. Why is capacitance important in electronic circuits. Capacitance plays a crucial role in various electronic applications.
Helps in electronic devices to smooth out unstable power. Timing Circuits: Capacitance and resistance determine circuit timing in oscillators and timers. Bypass DC, let AC signals through in amplifiers. Resonant Circuits: Works with inductors in frequency-dependent applications like radios. Understanding capacitance helps in designing efficient and reliable electronic circuits.