Select the type of function, enter it and write the point. The calculator will take moments to calculate linear approximation, with detailed calculations shown.
An online linear approximation calculator helps you to calculate the linear approximations of either parametric, polar, or explicit curves at any given point. The idea behind linearization or local linear approximation is to find a value of the function at the given point and evaluate the derivative to find the slope of entered points. Here’s we know all about how to do linear approximation of different types of curves.
In mathematics, use a linear approximation to estimate the value of a general function \(f(x)\) by using linear expressions. This is also known as tangent line approximation, which is the method of determining the line equation that is nearer estimation for entered linear functions at any given value of x. So, the linear approximation calculator approximates the value of the function and finds the derivative of the function to evaluate the derivative to find slope with the help of the linearization formula.
A linear approximation equation can simplify the behavior of complex functions. The point x = k is the accurate linear approximation. As we get farther away from a point\( x = k\), the estimation becomes less accurate. A simple curve linear approximation envies the direction of the curve. But, it does not predict the concavity of any curve. Example: Find the value of the \(f (8.3)\) by using the linear approximation \(x_0=2\), whose function is differentiable such as \(f (3)= 12, \text{ and} f’(3) = -2\). Solution: By using the linear approximation formula: \[L (x) ≈ f (x_0) + f ^`(x_0) (x - x_0)\] By putting the values in the formula, we get $$ L\left(x\right) = f\left(3\right) + f^\left(3\right)\left(x - 3\right) = 18 - 2x $$ $$Hence, f(8.3)= 18-2(3.5)$$ $$f(8.3)= 18 – 7$$ $$f(8.3) = 11$$ Moreover, an Online Integral Calculator helps you to evaluate the integrals of the functions with respect to the variable involved.
The online linearization calculator will estimate the values of a given function by using linear approximation formula with the following steps:
From the source of Wikipedia: Period of oscillation, Electrical resistivity, Gaussian optics. From the source of Paul's Notes: Linear Approximations, Linearization of a function, Find the linearization of L(x) of the function.